今天给各位分享费马大定理的知识,其中也会对费马大定理证明过程进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

费马大定理的内容是什么?

历史上有许多人,他们在主要从事的工作方面没有取得什么成果,而在平常茶余饭后的闲暇时间里却取得了了不起的成就。费马就是一个典型。在今天,人们提到皮埃尔·德·费马(1601~1665),主要不是因为他是一个政治家或法官,而是因为他是一个出色的业余数学家。费马在数学的许多领域都进行过研究并小有建树,但真正令他名满天下的是被后人称之为“费马大定理”的猜想。

费马大定理的表述很简单:对于正整数,不可能将一个高于2次的幂写成两个同次幂的和。换句话说就是,方程Xn+Yn=Zn,当n>2时,不存在正整数解。在一本书的页边,费马写到:我有一个对这个命题的十分优美的证明,这里空白太小,写不下。

从此包括大数学家欧拉、柯西在内的无数智者都曾为此殚精竭智,虽然每次都能向前迈进一小步,但都未能最终证明费马大定理。300多年来,很多人声称找到了解决这个难题的办法,然而每一次均为人所推翻。从费马大定理本身来说,证明不证明它对数学的发展没有多大意义。但一方面,这是对智慧的挑战;另一方面,数学家们从证明费马大定理的过程中得到了许多意外的收获,一些新的数学分支和方法正是在对它的研究中产生的。因而,费马大定理的证明一直受到人们

的关注。

关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一。按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命。在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文。碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间。之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年。

美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明。他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金。

怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数。因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人倾向于认为当年的费马其实毫无发现,或者只是想到了一个错误的方法。

什么是费马大定理?

费马中值定理公式:

利用连续函数在闭区间的介值定理可解决的一类中值问题,即证明存在ξ∈[a,b],使得某个命题成立。利用罗尔定理、费马定理可解决的一类中值定理,即证明存在ξ∈[a,b],使得H(ξ,f(ξ),f’(ξ))=0。

费马定理通俗解释

费马大定理,也即费马方程,其中的N如果等于或大于3,就将不可能有完全的整数解,也即就将进入某种创造性“三”的混沌域。只有进入了混沌域才可能产生和创造新的事物。

费马大定理,简单理解就是费马提出的一个定理,具体定理的内容就是x的N次方+y的N次方=z的N次方,当n大于2时,这个方程没有任何整数解。

这个等式看起来和我们初中学过的勾股定理很像,而费马大定理就是费马在勾股定理的基础上进行的一个研究。

2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即勾股定理。

大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:

“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。

费尔马大定理是什么

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n 2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

高数上费马定理是什么

物理中的费马定理:光总是走时间最短的路径.

数学中的费马小定理:在一个有限群G中,a^{Card(G)}=a.例子:a^n=a模n. 扩展资料

三角形里的.费马点:一个三角形里使得到三个顶点距离之和最短的点P.在三角形的角都小于120度时,这个点唯一并且满足角APB=角BPC=角CPA=120度.

费马大定理,又名费马最后定理,又名Fermat-Wiles定理(由Wiles证处故得名):对于任何的大于等于3的正整数n,任何的正整数a,b,c都有a^n+b^n不等于c^n.

费马大定理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于费马大定理证明过程、费马大定理的信息别忘了在本站进行查找喔。

发表回复

后才能评论